Reading PAGE

Peer Evaluation activity

Emailed by 1
Downloads 662
Views 527
Full text requests 9
Followed by 2

Total impact ?

    Send a

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user An-Ping Li

    Research Fellow

    Beijing 100085, P.R.China

    Appl. Comput. Math. 6 (2007), no.1, pp.27-38 METHODS FOR SOLVING OF STABILIZATION PROBLEM OF THE DISCRETE PERIODIC SYSTEM WITH RESPECT TO OUTPUT VARIABLE

    Export to Mendeley

    Abstract. In the present paper, unlike the papers [17,20,24,26] using the matrix method [25]there are presented the new relations to calculate feedback matrix coefficients for a discrete periodic optimal regulator problem with respect to output. On the base of these relations the analogue of Levine Athans algorithm [24] (in stationary case) is created, that on an example [19] does not improve the exactness of solutions. Therefore, using the gradient methods [29] we offer a calculating algorithm that improves the exactness of solution of the problem considered in [19]. Further, the inverse problem is formulated for a static feedback discrete periodic system with respect to output variable on the base of linear matrix inequalities (LMI) [16,18,22,23]. A new calculating algorithm is offered for its solution. The systems of inequalities are composed by means of relations defining the feedback chain matrix of the linear regulators for the discrete periodic systems that are obtained in section 2 of the paper. The efficiency of the offered algorithm is illustrated on an example [19]. Key Words: static output feedback, periodic systems, inverse problem, numerical methods, Lyapunovs equation.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Appl. Comput. Math. 6 (2007), no.1, pp.27-38 METHODS FOR SOLVING OF STABILIZATION PROBLEM OF THE DISCRETE PERIODIC SYSTEM WITH RESPECT TO OUTPUT VARIABLE
    Abstract : Abstract. In the present paper, unlike the papers [17,20,24,26] using the matrix method [25]there are presented the new relations to calculate feedback matrix coefficients for a discrete periodic optimal regulator problem with respect to output. On the base of these relations the analogue of Levine Athans algorithm [24] (in stationary case) is created, that on an example [19] does not improve the exactness of solutions. Therefore, using the gradient methods [29] we offer a calculating algorithm that improves the exactness of solution of the problem considered in [19]. Further, the inverse problem is formulated for a static feedback discrete periodic system with respect to output variable on the base of linear matrix inequalities (LMI) [16,18,22,23]. A new calculating algorithm is offered for its solution. The systems of inequalities are composed by means of relations defining the feedback chain matrix of the linear regulators for the discrete periodic systems that are obtained in section 2 of the paper. The efficiency of the offered algorithm is illustrated on an example [19]. Key Words: static output feedback, periodic systems, inverse problem, numerical methods, Lyapunovs equation.
    Subject : unspecified
    Area : Mathematics
    Language : English
    Affiliations
    Url : http://www.science.az/acm/v_6_n_1_2007/27-38.pdf
    Doi : 10.1.1.86.1280

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    An-Ping's Peer Evaluation activity

    Emailed by 1
    • Anonymous : 1
    Downloads 662
    Views 527
    Full text requests 9
    Followed by 2

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.