Reading PAGE

Peer Evaluation activity

Emailed by 1
Downloads 713
Views 529
Full text requests 9
Followed by 2

Total impact ?

    Send a

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user An-Ping Li

    Research Fellow

    Beijing 100085, P.R.China

    Exploiting Web Matrix Permutations to Speedup PageRank Computation

    Export to Mendeley

    Recently, the research community has devoted an increased attention to reduce the computational time needed by Web ranking algorithms. In particular, we saw many proposals to speed up the well-known PageRank algorithm used by Google. This interest is motivated by two dominant factors: (1) the Web Graph has huge dimensions and it is subject to dramatic updates in term of nodes and links - therefore PageRank assignment tends to became obsolete very soon; (2) many PageRank vectors need to be computed according to di#erent personalization vectors chosen. In the present paper, we address this problem from a numerical point of view. First, we show how to treat dangling nodes in a way which naturally adapts to the random surfer model and preserves the sparsity of the Web Graph. This result allows to consider the PageRank computation as a sparse linear system in alternative to the commonly adopted eigenpairs interpretation. Second, we exploit the Web Matrix reducibility and compose opportunely some Web matrix permutation to speed up the PageRank computation. We tested our approaches on a Web Graphs crawled from the net. The largest one account about 24 millions nodes and more than 100 million links. Upon this Web Graph, the cost for computing the PageRank is reduced of 58% in terms of Mflops and of 89% in terms of time respect to the Power method commonly used.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Exploiting Web Matrix Permutations to Speedup PageRank Computation
    Abstract : Recently, the research community has devoted an increased attention to reduce the computational time needed by Web ranking algorithms. In particular, we saw many proposals to speed up the well-known PageRank algorithm used by Google. This interest is motivated by two dominant factors: (1) the Web Graph has huge dimensions and it is subject to dramatic updates in term of nodes and links - therefore PageRank assignment tends to became obsolete very soon; (2) many PageRank vectors need to be computed according to di#erent personalization vectors chosen. In the present paper, we address this problem from a numerical point of view. First, we show how to treat dangling nodes in a way which naturally adapts to the random surfer model and preserves the sparsity of the Web Graph. This result allows to consider the PageRank computation as a sparse linear system in alternative to the commonly adopted eigenpairs interpretation. Second, we exploit the Web Matrix reducibility and compose opportunely some Web matrix permutation to speed up the PageRank computation. We tested our approaches on a Web Graphs crawled from the net. The largest one account about 24 millions nodes and more than 100 million links. Upon this Web Graph, the cost for computing the PageRank is reduced of 58% in terms of Mflops and of 89% in terms of time respect to the Power method commonly used.
    Subject : unspecified
    Area : Mathematics
    Language : English
    Affiliations
    Url : http://www.di.unipi.it/~gulli/../%7Egulli/papers/itt/exploiting_web_matrix_tech_report-iit.pdf
    Doi : 10.1.1.1.7688

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    An-Ping's Peer Evaluation activity

    Emailed by 1
    • Anonymous : 1
    Downloads 713
    Views 529
    Full text requests 9
    Followed by 2

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.