Reading PAGE

Peer Evaluation activity

Emailed by 1
Downloads 779
Views 531
Full text requests 10
Followed by 2

Total impact ?

    Send a

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user An-Ping Li

    Research Fellow

    Beijing 100085, P.R.China

    Parameterized Verification with Automatically Computed Inductive Assertions

    Export to Mendeley

    The paper presents a method, called the method of verification by invisible invariants, for the automatic verification of a large class of parameterized systems. The method is based on the automatic calculation of candidate inductive assertions and checking for their inductiveness, using symbolic model-checking techniques for both tasks. First, we show how to use model-checking techniques over finite (and small) instances of the parameterized system in order to derive candidates for invariant assertions. Next, we show that the premises of the standard deductive inv rule for proving invariance properties can be automatically resolved by finite-state (bdd-based) methods with no need for interactive theorem proving. Combining the automatic computation of invariants with the automatic resolution of the VCs (verification conditions) yields a (necessarily) incomplete but fully automatic sound method for verifying large classes of parameterized systems. The generated invariants can be transferred to the VC-validation phase without ever been examined by the user, which explains why we refer to them as "invisible". The efficacy of the method is demonstrated by automatic verification of diverse parameterized systems in a fully automatic and efficient manner.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Parameterized Verification with Automatically Computed Inductive Assertions
    Abstract : The paper presents a method, called the method of verification by invisible invariants, for the automatic verification of a large class of parameterized systems. The method is based on the automatic calculation of candidate inductive assertions and checking for their inductiveness, using symbolic model-checking techniques for both tasks. First, we show how to use model-checking techniques over finite (and small) instances of the parameterized system in order to derive candidates for invariant assertions. Next, we show that the premises of the standard deductive inv rule for proving invariance properties can be automatically resolved by finite-state (bdd-based) methods with no need for interactive theorem proving. Combining the automatic computation of invariants with the automatic resolution of the VCs (verification conditions) yields a (necessarily) incomplete but fully automatic sound method for verifying large classes of parameterized systems. The generated invariants can be transferred to the VC-validation phase without ever been examined by the user, which explains why we refer to them as "invisible". The efficacy of the method is demonstrated by automatic verification of diverse parameterized systems in a fully automatic and efficient manner.
    Subject : unspecified
    Area : Mathematics
    Language : English
    Affiliations
    Url : http://cs.nyu.edu/~zuck/pubs/cav01.ps
    Doi : 10.1.1.15.9643

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    An-Ping's Peer Evaluation activity

    Emailed by 1
    • Anonymous : 1
    Downloads 779
    Views 531
    Full text requests 10
    Followed by 2

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.