Reading PAGE

Peer Evaluation activity

Emailed by 1
Downloads 760
Views 531
Full text requests 9
Followed by 2

Total impact ?

    Send a

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user An-Ping Li

    Research Fellow

    Beijing 100085, P.R.China

    VIDEO STREAMING Coding Multiple Description

    Export to Mendeley

    a new technology for video streaming over the Internet The Internet is growing quickly as a network of heterogeneous communication networks. The number of users is rapidly expanding and bandwidth-hungry services, such as video streaming, are becoming more and more popular by the day. However, heterogeneity and congestion cause three main problems: unpredictable throughput, losses and delays. The challenge is therefore to provide: (i) quality, even at low bitrates, (ii) reliability, independent of loss patterns and (iii) interactivity (low perceived latency)... to many users simultaneously. In this article, we will discuss various well-known technologies for streaming video over the Internet. We will look at how these technologies partially solve the aforementioned problems. Then, we will present and explain Multiple Description Coding which offers a very good solution and how it has been implemented and tested at STMicroelectronics. Packet networks [1][2] Heterogeneity adds up with errors and congestion: backbone and wired links have an increasing capacity while, at the same time, more and more low-bandwidth error-prone wireless devices are being connected. Throughput may become unpredictable. If the transmission rate does not match the capacity of the bottleneck link, some packets must be dropped. The delivery system may provide prioritisation: the most important packets are given a preferential treatment, while the least important packets are dropped first. However, usually networks will drop packets at random. Packet loss probability is not constant; on the contrary, it can be wildly varying, going from very good (no loss) to very bad (transmission outages). This makes the design of the delivery system very difficult. Usually there are two options: ? the system can be designed for the worst case; ? or it can be made adaptive. If it is designed for the worst case, it will be inefficient every time the channel is better than the worst case, i.e. most of time. Conversely, if it is designed to be adaptive, it will most probably adapt too late.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : VIDEO STREAMING Coding Multiple Description
    Abstract : a new technology for video streaming over the Internet The Internet is growing quickly as a network of heterogeneous communication networks. The number of users is rapidly expanding and bandwidth-hungry services, such as video streaming, are becoming more and more popular by the day. However, heterogeneity and congestion cause three main problems: unpredictable throughput, losses and delays. The challenge is therefore to provide: (i) quality, even at low bitrates, (ii) reliability, independent of loss patterns and (iii) interactivity (low perceived latency)... to many users simultaneously. In this article, we will discuss various well-known technologies for streaming video over the Internet. We will look at how these technologies partially solve the aforementioned problems. Then, we will present and explain Multiple Description Coding which offers a very good solution and how it has been implemented and tested at STMicroelectronics. Packet networks [1][2] Heterogeneity adds up with errors and congestion: backbone and wired links have an increasing capacity while, at the same time, more and more low-bandwidth error-prone wireless devices are being connected. Throughput may become unpredictable. If the transmission rate does not match the capacity of the bottleneck link, some packets must be dropped. The delivery system may provide prioritisation: the most important packets are given a preferential treatment, while the least important packets are dropped first. However, usually networks will drop packets at random. Packet loss probability is not constant; on the contrary, it can be wildly varying, going from very good (no loss) to very bad (transmission outages). This makes the design of the delivery system very difficult. Usually there are two options: ? the system can be designed for the worst case; ? or it can be made adaptive. If it is designed for the worst case, it will be inefficient every time the channel is better than the worst case, i.e. most of time. Conversely, if it is designed to be adaptive, it will most probably adapt too late.
    Subject : unspecified
    Area : Mathematics
    Language : English
    Affiliations
    Url : http://up.ebu.ch/en/technical/trev/trev_312-vitali_streaming.pdf
    Doi : 10.1.1.128.6254

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    An-Ping's Peer Evaluation activity

    Emailed by 1
    • Anonymous : 1
    Downloads 760
    Views 531
    Full text requests 9
    Followed by 2

    An-Ping has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.