Reading PAGE

Peer Evaluation activity

Downloads 261

Total impact ?

    Send a

    Julian has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Julian Miller Trusted member

    Lecturer

    University of York

    Developments in Cartesian Genetic Programming: self-modifying CGP

    Export to Mendeley

    Self-modifying Cartesian Genetic Programming (SMCGP) is a general purpose, graph-based, developmental form of Genetic Programming founded on Cartesian Genetic Programming. In addition to the usual computational functions, it includes functions that can modify the program encoded in the genotype. This means that programs can be iterated to produce an infinite sequence of programs (phenotypes) from a single evolved genotype. It also allows programs to acquire more inputs and produce more outputs during this iteration. We discuss how SMCGP can be used and the results obtained in several different problem domains, iincluding digital circuits, generation of patterns and sequences, and mathematical problems. We find that SMCGP can efficiently solve all the problems studied. In addition, we prove mathematically that evolved programs can provide general solutions to a number of problems: n-input even-parity, n-input adder, and sequence approximation to pi.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Developments in Cartesian Genetic Programming: self-modifying CGP
    Author(s) : Simon Harding.,Julian F. Miller, Wolfgang Banzhaf
    Abstract : Self-modifying Cartesian Genetic Programming (SMCGP) is a general purpose, graph-based, developmental form of Genetic Programming founded on Cartesian Genetic Programming. In addition to the usual computational functions, it includes functions that can modify the program encoded in the genotype. This means that programs can be iterated to produce an infinite sequence of programs (phenotypes) from a single evolved genotype. It also allows programs to acquire more inputs and produce more outputs during this iteration. We discuss how SMCGP can be used and the results obtained in several different problem domains, iincluding digital circuits, generation of patterns and sequences, and mathematical problems. We find that SMCGP can efficiently solve all the problems studied. In addition, we prove mathematically that evolved programs can provide general solutions to a number of problems: n-input even-parity, n-input adder, and sequence approximation to pi.
    Keywords : Cartesian genetic programming, genetic programming, evolutionary computation

    Subject : Genetic Programming
    Area : Computer Science
    Language : English
    Year : 2011

    Affiliations University of York
    Journal : Genetic Programming and Evolvable Machines
    Volume : 11
    Publisher : Springer
    Pages : 397-439

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Julian's Peer Evaluation activity

    Julian has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.