Reading PAGE

Peer Evaluation activity

Downloads 11
Views 62

Total impact ?

    Send a

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

    This was brought to you by:

    block this user Limsoon Wong Trusted member

    Professor

    Dept of Computer Science, National University of Singapore

    Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale.

    Export to Mendeley

    MOTIVATION: Protein-protein interaction, mediated by protein interaction sites, is intrinsic to many functional processes in the cell. In this paper, we propose a novel method to discover patterns in protein interaction sites. We observed from protein interaction networks that there exist a kind of significant substructures called interacting protein group pairs, which exhibit an all-versus-all interaction between the two protein-sets in such a pair. The full-interaction between the pair indicates a common interaction mechanism shared by the proteins in the pair, which can be referred as an interaction type. Motif pairs at the interaction sites of the protein group pairs can be used to represent such interaction type, with each motif derived from the sequences of a protein group by standard motif discovery algorithms. The systematic discovery of all pairs of interacting protein groups from large protein interaction networks is a computationally challenging problem. By a careful and sophisticated problem transformation, the problem is solved using efficient algorithms for mining frequent patterns, a problem extensively studied in data mining. RESULTS: We found 5349 pairs of interacting protein groups from a yeast interaction dataset. The expected value of sequence identity within the groups is only 7.48%, indicating non-homology within these protein groups. We derived 5343 motif pairs from these group pairs, represented in the form of blocks. Comparing our motifs with domains in the BLOCKS and PRINTS databases, we found that our blocks could be mapped to an average of 3.08 correlated blocks in these two databases. The mapped blocks occur 4221 out of total 6794 domains (protein groups) in these two databases. Comparing our motif pairs with iPfam consisting of 3045 interacting domain pairs derived from PDB, we found 47 matches occurring in 105 distinct PDB complexes. Comparing with another putative domain interaction database InterDom, we found 203 matches. AVAILABILITY: http://research.i2r.a-star.edu.sg/BindingMotifPairs/resources. SUPPLEMENTARY INFORMATION: http://research.i2r.a-star.edu.sg/BindingMotifPairs and Bioinformatics online.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Discovering motif pairs at interaction sites from protein sequences on a proteome-wide scale.
    Author(s) : Haiquan Li, Jinyan Li, Limsoon Wong
    Abstract : MOTIVATION: Protein-protein interaction, mediated by protein interaction sites, is intrinsic to many functional processes in the cell. In this paper, we propose a novel method to discover patterns in protein interaction sites. We observed from protein interaction networks that there exist a kind of significant substructures called interacting protein group pairs, which exhibit an all-versus-all interaction between the two protein-sets in such a pair. The full-interaction between the pair indicates a common interaction mechanism shared by the proteins in the pair, which can be referred as an interaction type. Motif pairs at the interaction sites of the protein group pairs can be used to represent such interaction type, with each motif derived from the sequences of a protein group by standard motif discovery algorithms. The systematic discovery of all pairs of interacting protein groups from large protein interaction networks is a computationally challenging problem. By a careful and sophisticated problem transformation, the problem is solved using efficient algorithms for mining frequent patterns, a problem extensively studied in data mining. RESULTS: We found 5349 pairs of interacting protein groups from a yeast interaction dataset. The expected value of sequence identity within the groups is only 7.48%, indicating non-homology within these protein groups. We derived 5343 motif pairs from these group pairs, represented in the form of blocks. Comparing our motifs with domains in the BLOCKS and PRINTS databases, we found that our blocks could be mapped to an average of 3.08 correlated blocks in these two databases. The mapped blocks occur 4221 out of total 6794 domains (protein groups) in these two databases. Comparing our motif pairs with iPfam consisting of 3045 interacting domain pairs derived from PDB, we found 47 matches occurring in 105 distinct PDB complexes. Comparing with another putative domain interaction database InterDom, we found 203 matches. AVAILABILITY: http://research.i2r.a-star.edu.sg/BindingMotifPairs/resources. SUPPLEMENTARY INFORMATION: http://research.i2r.a-star.edu.sg/BindingMotifPairs and Bioinformatics online.
    Subject : unspecified
    Area : Other
    Language : English
    Year : 2006

    Affiliations Dept of Computer Science, National University of Singapore
    Journal : Bioinformatics
    Volume : 22
    Issue : 8
    Publisher : Oxford Univ Press
    Pages : 989-996
    Url : http://www.ncbi.nlm.nih.gov/pubmed/16446278

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Limsoon's Peer Evaluation activity

    Downloads 11
    Views 62

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.