Reading PAGE

Peer Evaluation activity

Downloads 11
Views 62

Total impact ?

    Send a

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

    This was brought to you by:

    block this user Limsoon Wong Trusted member

    Professor

    Dept of Computer Science, National University of Singapore

    Increasing confidence of protein-protein interactomes.

    Export to Mendeley

    High-throughput experimental methods, such as yeast-two-hybrid and phage display, have fairly high levels of false positives (and false negatives). Thus the list of protein-protein interactions detected by such experiments would need additional wet laboratory validation. It would be useful if the list could be prioritized in some way. Advances in computational techniques for assessing the reliability of protein-protein interactions detected by such high-throughput methods are reviewed in this paper, with a focus on techniques that rely only on topological information of the protein interaction network derived from such high-throughput experiments. In particular, we discuss indices that are abstract mathematical characterizations of networks of reliable protein-protein interactions-e.g., "interaction generality" (IG), "interaction reliability by alternative pathways" (IRAP), and "functional similarity weighting" (FSWeight). We also present indices that are based on explicit motifs associated with true-positive protein interactions-e.g., "new interaction generality" (IG2) and "meso-scale motifs" (NeMoFinder).

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Increasing confidence of protein-protein interactomes.
    Author(s) : Jin Chen, Hon Nian Chua, Wynne Hsu, Mong-Li Lee, See-Kiong Ng, Rintaro Saito, Wing-Kin Sung, Limsoon Wong
    Abstract : High-throughput experimental methods, such as yeast-two-hybrid and phage display, have fairly high levels of false positives (and false negatives). Thus the list of protein-protein interactions detected by such experiments would need additional wet laboratory validation. It would be useful if the list could be prioritized in some way. Advances in computational techniques for assessing the reliability of protein-protein interactions detected by such high-throughput methods are reviewed in this paper, with a focus on techniques that rely only on topological information of the protein interaction network derived from such high-throughput experiments. In particular, we discuss indices that are abstract mathematical characterizations of networks of reliable protein-protein interactions-e.g., "interaction generality" (IG), "interaction reliability by alternative pathways" (IRAP), and "functional similarity weighting" (FSWeight). We also present indices that are based on explicit motifs associated with true-positive protein interactions-e.g., "new interaction generality" (IG2) and "meso-scale motifs" (NeMoFinder).
    Subject : unspecified
    Area : Other
    Language : English
    Year : 2006

    Affiliations Dept of Computer Science, National University of Singapore
    Volume : 17
    Issue : 2
    Pages : 284-297
    Url : http://www.ncbi.nlm.nih.gov/pubmed/17514831

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Limsoon's Peer Evaluation activity

    Downloads 11
    Views 62

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.