Reading PAGE

Peer Evaluation activity

Downloads 13
Views 63

Total impact ?

    Send a

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

    This was brought to you by:

    block this user Limsoon Wong Trusted member

    Professor

    Dept of Computer Science, National University of Singapore

    Data mining tools for biological sequences.

    Export to Mendeley

    We describe a methodology, as well as some related data mining tools, for analyzing sequence data. The methodology comprises three steps: (a) generating candidate features from the sequences, (b) selecting relevant features from the candidates, and (c) integrating the selected features to build a system to recognize specific properties in sequence data. We also give relevant techniques for each of these three steps. For generating candidate features, we present various types of features based on the idea of k-grams. For selecting relevant features, we discuss signal-to-noise, t-statistics, and entropy measures, as well as a correlation-based feature selection method. For integrating selected features, we use machine learning methods, including C4.5, SVM, and Naive Bayes. We illustrate this methodology on the problem of recognizing translation initiation sites. We discuss how to generate and select features that are useful for understanding the distinction between ATG sites that are translation initiation sites and those that are not. We also discuss how to use such features to build reliable systems for recognizing translation initiation sites in DNA sequences.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Data mining tools for biological sequences.
    Author(s) : Huiqing Liu, Limsoon Wong
    Abstract : We describe a methodology, as well as some related data mining tools, for analyzing sequence data. The methodology comprises three steps: (a) generating candidate features from the sequences, (b) selecting relevant features from the candidates, and (c) integrating the selected features to build a system to recognize specific properties in sequence data. We also give relevant techniques for each of these three steps. For generating candidate features, we present various types of features based on the idea of k-grams. For selecting relevant features, we discuss signal-to-noise, t-statistics, and entropy measures, as well as a correlation-based feature selection method. For integrating selected features, we use machine learning methods, including C4.5, SVM, and Naive Bayes. We illustrate this methodology on the problem of recognizing translation initiation sites. We discuss how to generate and select features that are useful for understanding the distinction between ATG sites that are translation initiation sites and those that are not. We also discuss how to use such features to build reliable systems for recognizing translation initiation sites in DNA sequences.
    Subject : unspecified
    Area : Other
    Language : English
    Year : 2003

    Affiliations Dept of Computer Science, National University of Singapore
    Journal : Journal of Bioinformatics and Computational Biology
    Volume : 1
    Issue : 1
    Pages : 139-167
    Url : http://www.ncbi.nlm.nih.gov/pubmed/15290785

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Limsoon's Peer Evaluation activity

    Downloads 13
    Views 63

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.