Reading PAGE

Peer Evaluation activity

Downloads 14
Views 63

Total impact ?

    Send a

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

    This was brought to you by:

    block this user Limsoon Wong Trusted member

    Professor

    Dept of Computer Science, National University of Singapore

    ECTracker--an efficient algorithm for haplotype analysis and classification.

    Export to Mendeley

    This work aims at discovering the genetic variations of hemophilia A patients through examining the combination of molecular haplotypes present in hemophilia A and normal local populations using data mining methods. Data mining methods that are capable of extracting understandable and expressive patterns and also capable of making predictions based on inferences made on the patterns were explored in this work. An algorithm known as ECTracker is proposed and its performance compared with some common data mining methods such as artificial neural network, support vector machine, naive Bayesian, and decision tree (C4.5). Experimental studies and analyses show that ECTracker has comparatively good predictive accuracies in classification when compared to methods that can only perform classification. At the same time, ECTracker is also capable of producing easily comprehensible and expressive patterns for analytical purposes by experts.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : ECTracker--an efficient algorithm for haplotype analysis and classification.
    Author(s) : Li Lin, Limsoon Wong, Tze-Yun Leong, Pohsan Lai
    Abstract : This work aims at discovering the genetic variations of hemophilia A patients through examining the combination of molecular haplotypes present in hemophilia A and normal local populations using data mining methods. Data mining methods that are capable of extracting understandable and expressive patterns and also capable of making predictions based on inferences made on the patterns were explored in this work. An algorithm known as ECTracker is proposed and its performance compared with some common data mining methods such as artificial neural network, support vector machine, naive Bayesian, and decision tree (C4.5). Experimental studies and analyses show that ECTracker has comparatively good predictive accuracies in classification when compared to methods that can only perform classification. At the same time, ECTracker is also capable of producing easily comprehensible and expressive patterns for analytical purposes by experts.
    Subject : unspecified
    Area : Other
    Language : English
    Year : 2007

    Affiliations Dept of Computer Science, National University of Singapore
    Journal : Studies In Health Technology And Informatics
    Volume : 129
    Issue : Pt 2
    Pages : 1270-1274
    Url : http://api.mendeley.com/research/ectrackeran-efficient-algorithm-haplotype-analysis-classification/

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Limsoon's Peer Evaluation activity

    Downloads 14
    Views 63

    Limsoon has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.