Reading PAGE

Peer Evaluation activity

Downloads 2
Views 19

Total impact ?

    Send a

    Bernard has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Bernard A. Cousin Trusted member

    Professor

    University of Rennes 1
    IRISA laboratory

    Performance Analysis of CGS, a k-Coverage Algorithm Based on One-Hop Neighboring Knowledge

    Export to Mendeley

    Controlled Greedy Sleep (CGS) is a recent k-coverage algorithm based on one-hop neighboring knowledge. This paper presents the Controlled Greedy Sleep algorithm and highlights its best use cases thanks to performance analysis. Studies have been performed within a ring topology. This specific topology enables CGS validation and the design of an energetic model. They are used to compare CGS performance results with the maximal erformances that could be expected. The ring topology allows us to determine analytically the minimum, maximum and relative values of our performances criteria which are: the quality, the cost and the duration of the k-coverage. According to the previous criteria we show in this paper that CGS is before anything designed to guarantee the maximum quality of coverage. We prove the CGS robustness when there are message losses. We show that CGS relative performances are improved when the overdosing and the communication cost increase. This is mostly because sensors just need to send at most three CGS messages per period and only need to know their one-hop neighbors.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Performance Analysis of CGS, a k-Coverage Algorithm Based on One-Hop Neighboring Knowledge
    Author(s) : Alexandre Pocquet, Bernard Cousin, Miklos Molnar, Patrice Parraud
    Abstract : Controlled Greedy Sleep (CGS) is a recent k-coverage algorithm based on one-hop neighboring knowledge. This paper presents the Controlled Greedy Sleep algorithm and highlights its best use cases thanks to performance analysis. Studies have been performed within a ring topology. This specific topology enables CGS validation and the design of an energetic model. They are used to compare CGS performance results with the maximal erformances that could be expected. The ring topology allows us to determine analytically the minimum, maximum and relative values of our performances criteria which are: the quality, the cost and the duration of the k-coverage. According to the previous criteria we show in this paper that CGS is before anything designed to guarantee the maximum quality of coverage. We prove the CGS robustness when there are message losses. We show that CGS relative performances are improved when the overdosing and the communication cost increase. This is mostly because sensors just need to send at most three CGS messages per period and only need to know their one-hop neighbors.
    Keywords : distributed priority algorithm, k coverage, mostly sleeping sensors, one hop neighbor, topology control, wireless sensors

    Subject : unspecified
    Area : Other
    Language : English
    Year : 2008

    Affiliations University of Rennes 1
    Conference_title : Proceedings of the 2008 Second International Conference on Sensor Technologies and Applications Volume 00
    Pages : 115-122
    Url : http://portal.acm.org/citation.cfm?id=1446587

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Bernard's Peer Evaluation activity

    Bernard has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.