Reading PAGE

Peer Evaluation activity

Downloads 4
Views 64

Total impact ?

    Send a

    David has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user David Pointcheval Trusted member

    Senior Research Fellow / David.Pointcheval@ens.fr

    ENS, Paris, France

    Threshold Cryptosystems Secure against Chosen-Ciphertext Attacks

    Export to Mendeley

    Semantic security against chosen-ciphertext attacks (IND-CCA) is widely believed as the correct security level for public-key encryption scheme. On the other hand, it is often dangerous to give to only one people the power of decryption. Therefore, threshold cryptosystems aimed at distributing the decryption ability. However, only two efficient such schemes have been proposed so far for achieving IND-CCA. Both are El Gamal-like schemes and thus are based on the same intractability assumption, namely the Decisional Diffie-Hellman problem. In this article we rehabilitate the twin-encryption paradigm proposed by Naor and Yung to present generic conversions from a large family of (threshold) IND-CPA scheme into a (threshold) IND-CCA one in the random oracle model. An efficient instantiation is also proposed, which is based on the Paillier cryptosystem. This new construction provides the first example of threshold cryptosystem secure against chosen-ciphertext attacks based on the factorization problem. Moreover, this construction provides a scheme where the homomorphic properties of the original scheme still hold. This is rather cumbersome because homomorphic cryptosystems are known to be malleable and therefore not to be CCA secure. However, we do not build a homomorphic cryptosystem, but just keep the homomorphic properties.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Threshold Cryptosystems Secure against Chosen-Ciphertext Attacks
    Author(s) : Pierre-alain Fouque, David Pointcheval
    Abstract : Semantic security against chosen-ciphertext attacks (IND-CCA) is widely believed as the correct security level for public-key encryption scheme. On the other hand, it is often dangerous to give to only one people the power of decryption. Therefore, threshold cryptosystems aimed at distributing the decryption ability. However, only two efficient such schemes have been proposed so far for achieving IND-CCA. Both are El Gamal-like schemes and thus are based on the same intractability assumption, namely the Decisional Diffie-Hellman problem. In this article we rehabilitate the twin-encryption paradigm proposed by Naor and Yung to present generic conversions from a large family of (threshold) IND-CPA scheme into a (threshold) IND-CCA one in the random oracle model. An efficient instantiation is also proposed, which is based on the Paillier cryptosystem. This new construction provides the first example of threshold cryptosystem secure against chosen-ciphertext attacks based on the factorization problem. Moreover, this construction provides a scheme where the homomorphic properties of the original scheme still hold. This is rather cumbersome because homomorphic cryptosystems are known to be malleable and therefore not to be CCA secure. However, we do not build a homomorphic cryptosystem, but just keep the homomorphic properties.
    Keywords : chosen ciphertext attacks, threshold cryptosystems

    Subject : unspecified
    Area : Other
    Language : English
    Year : 2001

    Affiliations ENS, Paris, France
    Conference_title : Advances in Cryptology — ASIACRYPT 2001
    Volume : 2248
    Publisher : SpringerVerlag
    Pages : 351-368
    Url : http://www.springerlink.com/content/rgrvmcfpl4bu0lt7
    Doi : 10.1007/3-540-45682-1

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    David's Peer Evaluation activity

    Downloads 4
    Views 64

    David has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.