Reading PAGE

Peer Evaluation activity

Downloads 4
Views 63

Total impact ?

    Send a

    David has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user David Pointcheval Trusted member

    Senior Research Fellow / David.Pointcheval@ens.fr

    ENS, Paris, France

    Trapdoor Hard-to-Invert Group Isomorphisms and Their Application to Password-Based Authentication

    Export to Mendeley

    Abstract  In the security chain the weakest link is definitely the human one: human beings cannot remember long secrets and often resort to rather insecure solutions to keep track of their passwords or pass-phrases. For this reason it is very desirable to have protocols that do not require long passwords to guarantee security, even in the case in which exhaustive search is feasible. This is actually the goal of password-based key exchange protocols, secure against off-line dictionary attacks: two people share a password (possibly a very small one, say a 4-digit number), and after the protocol execution, they end up sharing a large secret session key (known to both of them, but nobody else). Then an adversary attacking the system should try several connections (on average 5000 for the above short password) in order to be able to get the correct password. Such a large number of erroneous connections can be prevented by various means. Our results can be highlighted as follows. First we define a new primitive that we call trapdoor hard-to-invert group isomorphisms, and give some candidates. Then we present a generic password-based key exchange construction that admits a security proof assuming that these objects exist. Finally, we instantiate our general scheme with some concrete examples, such as the Diffie-Hellman function and the RSA function, but more interestingly the modular square-root function, which leads to the first scheme with security related to the integer factorization problem. Furthermore, the latter variant is very efficient for one party (the server). Our results hold in the random-oracle model.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Trapdoor Hard-to-Invert Group Isomorphisms and Their Application to Password-Based Authentication
    Author(s) : Dario Catalano, David Pointcheval, Thomas Pornin
    Abstract : Abstract  In the security chain the weakest link is definitely the human one: human beings cannot remember long secrets and often resort to rather insecure solutions to keep track of their passwords or pass-phrases. For this reason it is very desirable to have protocols that do not require long passwords to guarantee security, even in the case in which exhaustive search is feasible. This is actually the goal of password-based key exchange protocols, secure against off-line dictionary attacks: two people share a password (possibly a very small one, say a 4-digit number), and after the protocol execution, they end up sharing a large secret session key (known to both of them, but nobody else). Then an adversary attacking the system should try several connections (on average 5000 for the above short password) in order to be able to get the correct password. Such a large number of erroneous connections can be prevented by various means. Our results can be highlighted as follows. First we define a new primitive that we call trapdoor hard-to-invert group isomorphisms, and give some candidates. Then we present a generic password-based key exchange construction that admits a security proof assuming that these objects exist. Finally, we instantiate our general scheme with some concrete examples, such as the Diffie-Hellman function and the RSA function, but more interestingly the modular square-root function, which leads to the first scheme with security related to the integer factorization problem. Furthermore, the latter variant is very efficient for one party (the server). Our results hold in the random-oracle model.
    Subject : unspecified
    Area : Other
    Language : English
    Year : 2007

    Affiliations ENS, Paris, France
    Journal : Journal of Cryptology
    Volume : 20
    Issue : 1
    Publisher : Springer-Verlag New York, Inc.
    Pages : 115 - 149
    Url : http://www.springerlink.com/index/10.1007/s00145-006-0431-8
    Doi : 10.1007/s00145-006-0431-8

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    David's Peer Evaluation activity

    Downloads 4
    Views 63

    David has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.