Reading PAGE

Peer Evaluation activity

Trusted by 1
Downloads 5
Views 79
Followed by 2

Total impact ?

    Send a

    Hakan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Hakan Olin Trusted member

    Professor

    Mid Sweden University

    Mesoscopic Spatiotemporal Dynamics of Linear and Rotary Molecular Motors

    Export to Mendeley

    An important problem in nanotechnology is to develop a method for assembling complex, aperiodic, structures. While simple self-assembly will not be able to address this problem, programmable-, or algorithmic-, self-assembly is powerful enough to be a potential solution. Here, we address the question of how the basic properties of the constituent building blocks are related to the periodicity of the resulting assembly. By introducing the parameters unique structures, which gives a measure of the complexity of an assembly, and bond uniqueness, which gives a measure of how the building blocks fit together, we show how to quantify the structural quality of a general assembly system and present relations between the parameters. The introduced methods will be helpful when designing assembly systems to be used for direct fabrication of nanosystems or for nano-scaffolds and addressable arrays.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Mesoscopic Spatiotemporal Dynamics of Linear and Rotary Molecular Motors
    Author(s) : Edeltraud Gehrig, Ortwin Hess
    Abstract : An important problem in nanotechnology is to develop a method for assembling complex, aperiodic, structures. While simple self-assembly will not be able to address this problem, programmable-, or algorithmic-, self-assembly is powerful enough to be a potential solution. Here, we address the question of how the basic properties of the constituent building blocks are related to the periodicity of the resulting assembly. By introducing the parameters unique structures, which gives a measure of the complexity of an assembly, and bond uniqueness, which gives a measure of how the building blocks fit together, we show how to quantify the structural quality of a general assembly system and present relations between the parameters. The introduced methods will be helpful when designing assembly systems to be used for direct fabrication of nanosystems or for nano-scaffolds and addressable arrays.
    Keywords : algorithmic self assembly, bond, programmable self assembly, scaffold assembly, tile systems, uniqueness

    Subject : unspecified
    Area : Other
    Language : English
    Year : 2006

    Affiliations Mid Sweden University
    Journal : Journal of Computational and Theoretical Nanoscience
    Volume : 3
    Issue : 6
    Pages : 933 - 950
    Url : http://openurl.ingenta.com/content/xref?genre=article&issn=1546-1955&volume=3&issue=6&spage=933
    Doi : 10.1166/jctn.2006.009

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Hakan's Peer Evaluation activity

    Trusted by 1
    Downloads 5
    Views 79
    Followed by 2

    Hakan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.