Reading PAGE

Peer Evaluation activity

Downloads 10
Views 2

Total impact ?

    Send a

    Luisa has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Luisa Mich

    Associate Professor / luisa.mich@unitn.it

    University of Trento

    Automating the Generation of Semantic Annotation Tools Using a Clustering Technique

    Export to Mendeley

    In order to generate semantic annotations for a collection of documents, one needs an annotation schema consisting of a semantic model (a.k.a. ontology) along with lists of linguistic indicators (keywords and patterns) for each concept in the ontology. The focus of this paper is the automatic generation of the linguistic indicators for a given semantic model and a corpus of documents. Our approach needs a small number of user-defined seeds and bootstraps itself by exploiting a novel clustering technique. The baseline for this work is the Cerno project 8 and the clustering algorithm LIMBO 2. We also present results that compare the output of the clustering algorithm with linguistic indicators created manually for two case studies.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Automating the Generation of Semantic Annotation Tools Using a Clustering Technique
    Author(s) : Vitór Souza, Nicola Zeni, Nadzeya Kiyavitskaya, Periklis Andritsos, Luisa Mich, John Mylopoulos
    Abstract : In order to generate semantic annotations for a collection of documents, one needs an annotation schema consisting of a semantic model (a.k.a. ontology) along with lists of linguistic indicators (keywords and patterns) for each concept in the ontology. The focus of this paper is the automatic generation of the linguistic indicators for a given semantic model and a corpus of documents. Our approach needs a small number of user-defined seeds and bootstraps itself by exploiting a novel clustering technique. The baseline for this work is the Cerno project 8 and the clustering algorithm LIMBO 2. We also present results that compare the output of the clustering algorithm with linguistic indicators created manually for two case studies.
    Subject : unspecified
    Area : Other
    Year : 2008

    Affiliations University of Trento
    Editors : Epaminondas Kapetanios, Vijayan Sugumaran, Myra Spiliopoulou
    Journal : NLDB 08 13th International Conference on Natural Language and In
    Volume : 5039
    Publisher : Springer Berlin Heidelberg
    City : Berlin, Heidelberg
    Pages : 91 - 96
    Url : http://www.springerlink.com/index/10.1007/978-3-540-69858-6_10
    Isbn : 978-3-540-69857-9
    Doi : 10.1007/978-3-540-69858-6_10

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Luisa's Peer Evaluation activity

    Luisa has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.