Reading PAGE

Peer Evaluation activity

Downloads 22
Views 23
Full text requests 10
Followed by 1

Total impact ?

    Send a

    Peter has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Peter Halligan

    Professor

    Cardiff university

    The neural consequences of conflict between intention and the senses

    Export to Mendeley

    Normal sensorimotor states involve integration of intention, action and sensory feedback. An example is the congruence between motor intention and sensory experience (both proprioceptive and visual) when we move a limb through space. Such goal-directed action necessitates a mechanism that monitors sensorimotor inputs to ensure that motor outputs are congruent with current intentions. Monitoring in this sense is usually implicit and automatic but becomes conscious whenever there is a mismatch between expected and realized sensorimotor states. To investigate how the latter type of monitoring is achieved we conducted three fully factorial functional neuroimaging experiments using PET measures of relative regional cerebral blood flow with healthy volunteers. In the first experiment subjects were asked to perform Luria's bimanual co-ordination task which involves either in-phase (conditions 1 and 3) or out-of-phase (conditions 2 and 4) bimanual movements (factor one), while looking towards their left hand. In half of the conditions (conditions 3 and 4) a mirror was used that altered visual feedback (factor two) by replacing their left hand with the mirror image of their right hand. Hence (in the critical condition 4) subjects saw in-phase movements despite performing out-of-phase movements. This mismatch between intention, proprioception and visual feedback engendered cognitive conflict. The main effect of out-of-phase movements was associated with increased neural activity in posterior parietal cortex (PPC) bilaterally Brodmann area (BA) 40, extending into BA 7 and dorsolateral prefrontal cortex (DLPFC) bilaterally (BA 9/46). The main effect of the mirror showed increased neural activity in right DLPFC (BA 9/46) and right superior PPC (BA 7) only. Analysis of the critical interaction revealed that the mismatch condition led to a specific activation in the right DLPFC alone (BA 9/46). Study 2, using an identical experimental set-up but manipulating visual feedback from the right hand (instead of the left), subsequently demonstrated that this right DLPFC activation was independent of the hand attended. Finally, study 3 removed the motor intentional component by moving the subjects' hand passively, thus engendering a mismatch between proprioception and vision only. Activation in the right lateral prefrontal cortex was now more ventral than in studies 1 or 2 (BA 44/45). A direct comparison of studies 1 and 3 (which both manipulated visual feedback from the left hand) confirmed that a ventral right lateral prefrontal region is primarily activated by discrepancies between signals from sensory systems, while a more dorsal area in right lateral prefrontal cortex is activated when actions must be maintained in the face of a conflict between intention and sensory outcome.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : The neural consequences of conflict between intention and the senses
    Author(s) : G. R. Fink
    Abstract : Normal sensorimotor states involve integration of intention, action and sensory feedback. An example is the congruence between motor intention and sensory experience (both proprioceptive and visual) when we move a limb through space. Such goal-directed action necessitates a mechanism that monitors sensorimotor inputs to ensure that motor outputs are congruent with current intentions. Monitoring in this sense is usually implicit and automatic but becomes conscious whenever there is a mismatch between expected and realized sensorimotor states. To investigate how the latter type of monitoring is achieved we conducted three fully factorial functional neuroimaging experiments using PET measures of relative regional cerebral blood flow with healthy volunteers. In the first experiment subjects were asked to perform Luria's bimanual co-ordination task which involves either in-phase (conditions 1 and 3) or out-of-phase (conditions 2 and 4) bimanual movements (factor one), while looking towards their left hand. In half of the conditions (conditions 3 and 4) a mirror was used that altered visual feedback (factor two) by replacing their left hand with the mirror image of their right hand. Hence (in the critical condition 4) subjects saw in-phase movements despite performing out-of-phase movements. This mismatch between intention, proprioception and visual feedback engendered cognitive conflict. The main effect of out-of-phase movements was associated with increased neural activity in posterior parietal cortex (PPC) bilaterally Brodmann area (BA) 40, extending into BA 7 and dorsolateral prefrontal cortex (DLPFC) bilaterally (BA 9/46). The main effect of the mirror showed increased neural activity in right DLPFC (BA 9/46) and right superior PPC (BA 7) only. Analysis of the critical interaction revealed that the mismatch condition led to a specific activation in the right DLPFC alone (BA 9/46). Study 2, using an identical experimental set-up but manipulating visual feedback from the right hand (instead of the left), subsequently demonstrated that this right DLPFC activation was independent of the hand attended. Finally, study 3 removed the motor intentional component by moving the subjects' hand passively, thus engendering a mismatch between proprioception and vision only. Activation in the right lateral prefrontal cortex was now more ventral than in studies 1 or 2 (BA 44/45). A direct comparison of studies 1 and 3 (which both manipulated visual feedback from the left hand) confirmed that a ventral right lateral prefrontal region is primarily activated by discrepancies between signals from sensory systems, while a more dorsal area in right lateral prefrontal cortex is activated when actions must be maintained in the face of a conflict between intention and sensory outcome.
    Subject : unspecified
    Area : Other
    Language : English
    Year : 1999

    Affiliations Cardiff university
    Journal : Brain
    Volume : 122
    Issue : 3
    Pages : 497 - 512
    Url : http://www.brain.oupjournals.org/cgi/doi/10.1093/brain/122.3.497
    Doi : 10.1093/brain/122.3.497

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Peter's Peer Evaluation activity

    Downloads 22
    Views 23
    Full text requests 10
    Followed by 1

    Peter has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.