Reading PAGE

Peer Evaluation activity

Downloads 38
Views 19
Full text requests 4

Total impact ?

    Send a

    Jonathan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Jonathan Knowles

    Professor

    UCL

    Characterisation of antibacterial copper releasing degradable phosphate glass fibres

    Export to Mendeley

    Phosphate-based glass fibres (PGF) of the general formula Na(2)O-CaO-P(2)O(5) are degradable in an aqueous environment, and therefore can function as antibacterial delivery systems through the inclusion of ions such as copper. In this study, PGF with varying amounts of copper oxide (CuO) were developed for potential uses in wound healing applications. PGF with 0, 1, 5 and 10 mol% CuO were produced with different diameters and characterised in terms of structural and antibacterial properties. The effect of CuO and fibre pulling speed on the glass properties were investigated using rapid differential scanning calorimetry, differential thermal analysis and X-ray diffraction. The effect of two fibre diameters on short-term (3 h) attachment and killing against Staphylococcus epidermidis were investigated and were related to their rate of degradation in deionised water, as well as copper ion release measured using ion chromatography. Thermal analysis showed that there was a significant increase in the PGF glass transition temperature as the CuO content increased. There was a significant decrease in the rate of degradation with increasing CuO content and an increase in fibre diameter. Over 6 h, both the amount and rate of copper ions released increased with CuO content, as well as a reduction in fibre diameter thus increasing the surface area to volume ratio. There was a decrease in the number of viable staphylococci both attached to the CuO-containing fibres and in the surrounding environment.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Characterisation of antibacterial copper releasing degradable phosphate glass fibres
    Author(s) : EA Abou Neel, I Ahmed, J Pratten, SN Nazhat, JC Knowles
    Abstract : Phosphate-based glass fibres (PGF) of the general formula Na(2)O-CaO-P(2)O(5) are degradable in an aqueous environment, and therefore can function as antibacterial delivery systems through the inclusion of ions such as copper. In this study, PGF with varying amounts of copper oxide (CuO) were developed for potential uses in wound healing applications. PGF with 0, 1, 5 and 10 mol% CuO were produced with different diameters and characterised in terms of structural and antibacterial properties. The effect of CuO and fibre pulling speed on the glass properties were investigated using rapid differential scanning calorimetry, differential thermal analysis and X-ray diffraction. The effect of two fibre diameters on short-term (3 h) attachment and killing against Staphylococcus epidermidis were investigated and were related to their rate of degradation in deionised water, as well as copper ion release measured using ion chromatography. Thermal analysis showed that there was a significant increase in the PGF glass transition temperature as the CuO content increased. There was a significant decrease in the rate of degradation with increasing CuO content and an increase in fibre diameter. Over 6 h, both the amount and rate of copper ions released increased with CuO content, as well as a reduction in fibre diameter thus increasing the surface area to volume ratio. There was a decrease in the number of viable staphylococci both attached to the CuO-containing fibres and in the surrounding environment.
    Keywords : absorbable implants, anti bacterial agents, anti bacterial agents administration & dosage, biocompatible materials, biocompatible materials chemistry, biocompatible materials pharmacology, cell adhesion, cell adhesion drug effects, cell survival, cell sur

    Subject : unspecified
    Area : Other
    Language : English
    Year : 2005

    Affiliations UCL
    Journal : Biomaterials
    Volume : 26
    Issue : 15
    Publisher : ELSEVIER SCI LTD
    Pages : 2247-2254
    Url : http://discovery.ucl.ac.uk/9991/

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Jonathan's Peer Evaluation activity

    Downloads 38
    Views 19
    Full text requests 4

    Jonathan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.