Reading PAGE

Peer Evaluation activity

Downloads 38
Views 18
Full text requests 4

Total impact ?

    Send a

    Jonathan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Jonathan Knowles

    Professor

    UCL

    Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.

    Export to Mendeley

    Hydroxyapatite (HA) porous scaffold was coated with HA and polycaprolactone (PCL) composites, and antibiotic drug tetracycline hydrochloride was entrapped within the coating layer. The HA scaffold obtained by a polymeric reticulate method, possessed high porosity approximately 87%) and controlled pore size (150-200 microm). Such a well-developed porous structure facilitated usage in a drug delivery system due to its high surface area and blood circulation efficiency. The PCL polymer, as a coating component, was used to improve the brittleness and low strength of the HA scaffold, as well to effectively entrap the drug. To improve the osteoconductivity and bioactivity of the coating layer, HA powder was hybridized with PCL solution to make the HA-PCL composite coating. With alteration in the coating concentration and HA/PCL ratio, the morphology, mechanical properties, and biodegradation behavior were investigated. Increasing the concentration rendered the stems thicker and some pores to be clogged; as well increasing the HA/PCL ratio made the coating surface be rough due to the large amount of HA particles. However, for all concentrations and compositions, uniform coatings were formed, i.e., with the HA particles being dispersed homogeneously in the PCL sheet. With the composite coating, the mechanical properties, such as compressive strength and elastic modulus were improved by several orders of magnitude. These improvements were more significant with thicker coatings, while little difference was observed with the HA/PCL ratio. The in vitro biodegradation of the composite coatings in the phosphate buffered saline solution increased linearly with incubation time and the rate differed with the coating concentration and the HA/PCL ratio; the higher concentration and HA amount caused the increased biodegradation. At short period (<2 h), about 20-30% drug was released especially due to free drug at the coating surface. However, the release rate was sustained for prolonged periods and was highly dependent on the degree of coating dissolution, suggesting the possibility of a controlled drug release in the porous scaffold with HA+PCL coating.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Hydroxyapatite/poly(epsilon-caprolactone) composite coatings on hydroxyapatite porous bone scaffold for drug delivery.
    Author(s) : HW Kim, JC Knowles, HE Kim
    Abstract : Hydroxyapatite (HA) porous scaffold was coated with HA and polycaprolactone (PCL) composites, and antibiotic drug tetracycline hydrochloride was entrapped within the coating layer. The HA scaffold obtained by a polymeric reticulate method, possessed high porosity approximately 87%) and controlled pore size (150-200 microm). Such a well-developed porous structure facilitated usage in a drug delivery system due to its high surface area and blood circulation efficiency. The PCL polymer, as a coating component, was used to improve the brittleness and low strength of the HA scaffold, as well to effectively entrap the drug. To improve the osteoconductivity and bioactivity of the coating layer, HA powder was hybridized with PCL solution to make the HA-PCL composite coating. With alteration in the coating concentration and HA/PCL ratio, the morphology, mechanical properties, and biodegradation behavior were investigated. Increasing the concentration rendered the stems thicker and some pores to be clogged; as well increasing the HA/PCL ratio made the coating surface be rough due to the large amount of HA particles. However, for all concentrations and compositions, uniform coatings were formed, i.e., with the HA particles being dispersed homogeneously in the PCL sheet. With the composite coating, the mechanical properties, such as compressive strength and elastic modulus were improved by several orders of magnitude. These improvements were more significant with thicker coatings, while little difference was observed with the HA/PCL ratio. The in vitro biodegradation of the composite coatings in the phosphate buffered saline solution increased linearly with incubation time and the rate differed with the coating concentration and the HA/PCL ratio; the higher concentration and HA amount caused the increased biodegradation. At short period (<2 h), about 20-30% drug was released especially due to free drug at the coating surface. However, the release rate was sustained for prolonged periods and was highly dependent on the degree of coating dissolution, suggesting the possibility of a controlled drug release in the porous scaffold with HA+PCL coating.
    Subject : unspecified
    Area : Other
    Language : English
    Year : 2004

    Affiliations UCL
    Journal : Biomaterials
    Volume : 25
    Issue : 7-8
    Publisher : ELSEVIER SCI LTD
    Pages : 1279-1287
    Url : http://discovery.ucl.ac.uk/167354/

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Jonathan's Peer Evaluation activity

    Downloads 38
    Views 18
    Full text requests 4

    Jonathan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.