Reading PAGE

Peer Evaluation activity

Downloads 38
Views 18
Full text requests 4

Total impact ?

    Send a

    Jonathan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Jonathan Knowles

    Professor

    UCL

    Hard-tissue-engineered zirconia porous scaffolds with hydroxyapatite sol-gel and slurry coatings.

    Export to Mendeley

    A zirconia (ZrO(2)) porous scaffold was coated with a gradient apatite layer to induce osteoconductivity with the use of a combination of sol-gel and powder slurry methods. The ZrO(2) was used to impart mechanical strength and the apatite layer was coated for functional biocompatibility. The coating layer, from the outside in, was composed of sol-gel hydroxyapatite (HA)/slurry HA/slurry FA. The sol-gel coating powder had a lower crystallinity than the slurry coating powder. The sol-gel HA coating over the HA/FA slurry coating layer made the surface very smooth. The sol-gel coating over the slurry coating layer enhanced the bonding strength up to 33 MPa. The dissolution rate of the sol-gel/slurry coating layer was much higher than that of the slurry coating. Moreover, the rate could be controlled by altering the heat-treatment temperature of the sol-gel HA layer. The MG63 cells cultured on these materials grew and spread in a different manner, depending on the coating layer. However, the proliferation rates of the cells on both coating systems were not much different.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Hard-tissue-engineered zirconia porous scaffolds with hydroxyapatite sol-gel and slurry coatings.
    Author(s) : HW Kim, HE Kim, JC Knowles
    Abstract : A zirconia (ZrO(2)) porous scaffold was coated with a gradient apatite layer to induce osteoconductivity with the use of a combination of sol-gel and powder slurry methods. The ZrO(2) was used to impart mechanical strength and the apatite layer was coated for functional biocompatibility. The coating layer, from the outside in, was composed of sol-gel hydroxyapatite (HA)/slurry HA/slurry FA. The sol-gel coating powder had a lower crystallinity than the slurry coating powder. The sol-gel HA coating over the HA/FA slurry coating layer made the surface very smooth. The sol-gel coating over the slurry coating layer enhanced the bonding strength up to 33 MPa. The dissolution rate of the sol-gel/slurry coating layer was much higher than that of the slurry coating. Moreover, the rate could be controlled by altering the heat-treatment temperature of the sol-gel HA layer. The MG63 cells cultured on these materials grew and spread in a different manner, depending on the coating layer. However, the proliferation rates of the cells on both coating systems were not much different.
    Keywords : biocompatible materials, biocompatible materials chemistry, biocompatible materials pharmacology, cell proliferation, cell shape, cells, cultured, durapatite, durapatite chemistry, durapatite pharmacology, gels, humans, materials testing, microscopy, elec

    Subject : unspecified
    Area : Other
    Language : English
    Year : 2004

    Affiliations UCL
    Journal : Journal of biomedical materials research Part B Applied biomater
    Volume : 70
    Issue : 2
    Publisher : WILEY-LISS
    Pages : 270-277
    Url : http://discovery.ucl.ac.uk/120140/

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Jonathan's Peer Evaluation activity

    Downloads 38
    Views 18
    Full text requests 4

    Jonathan has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.