Reading PAGE

Peer Evaluation activity

Downloads 4
Views 1

Total impact ?

    Send a

    ingber@alumni.caltech.edu has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

    This was brought to you by:

    block this user ingber@alumni.caltech.edu Ingber Trusted member

    Independent researcher / ingber@alumni.caltech.edu

    Lester Ingber Research

    Statistical mechanics of multiple scales of neocortical interactions

    Export to Mendeley

    INTRODUCTION General philosophy In many complex systems, as spatial-temporal scales of observation are increased, new phenomena arise by virtue of synergistic interactions among smaller-scale entities-perhaps more properly labeled "quasientities"-which serve to explain much observed data in a parsimonious, usually mathematically aesthetic, fashion. For example, in classical thermodynamics of equilibrium systems, it is possible to leap from microscopic molecular scales to macroscopic scales, to use the macroscopic concept of temperature to describe the average kinetic energy of microscopic molecular activity, or to use the macroscopic concept of pressure to describe the average rate of change of momentum per unit area of microscopic molecules bombarding the wall of a cavity. However, many complex systems are in nonequilibrium, being driven by nonlinear and stochastic interactions of many external and internal degrees of freedom. For these systems, classical thermodynamics typically does not apply. For example, the description of weather and ocean patterns, which attempt to include important features such as turbulence, rely on semiphenomenological mesoscopic models, those in agreement with molecular theories but not capable of being rigorously derived from them. Phase transitions in magnetic systems, and many systems similarly modeled, require careful treatment of a continuum of scales near critical points. In general, rather than having a general theory of nonequilibrium nonlinear process, there are several overlapping approaches, typically geared to classes of systems, usually expanding on nonlinear treatments of stochastic systems. Many biological systems give rise to phenomena at overlapping spatial-temporal scales. For example, the coiling of DNA is reasonably approached by blending microscopic molecular-dynamics calculations with mesoscopic diffusion equations to study angular winding. These approaches have been directed to study electroencephalography (EEG), as well as other biological systems. Therefore, it should not be surprising that the complex human brain supports many phenomena arising at different spatial-temporal scales. What is perhaps surprising is that it seems possible to study truly macroscopic neocortical phenomena such as EEG by appealing to a chain of arguments dealing with overlapping microscopic and mesoscopic scales. A series of papers has developed this statistical mechanics of neocortical interactions (SMNI). This approach permits us to find models of EEG whose variables and parameters are reasonably identified with ensembles of synaptic and neuronal interactions. This approach has only recently been made possible by developments in mathematical physics since the late 1970s, in the field of nonlinear nonequilibrium statistical mechanics. The origins of this theory are in quantum and gravitational field theory.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Statistical mechanics of multiple scales of neocortical interactions
    Author(s) : Lester Ingber
    Abstract : INTRODUCTION General philosophy In many complex systems, as spatial-temporal scales of observation are increased, new phenomena arise by virtue of synergistic interactions among smaller-scale entities-perhaps more properly labeled "quasientities"-which serve to explain much observed data in a parsimonious, usually mathematically aesthetic, fashion. For example, in classical thermodynamics of equilibrium systems, it is possible to leap from microscopic molecular scales to macroscopic scales, to use the macroscopic concept of temperature to describe the average kinetic energy of microscopic molecular activity, or to use the macroscopic concept of pressure to describe the average rate of change of momentum per unit area of microscopic molecules bombarding the wall of a cavity. However, many complex systems are in nonequilibrium, being driven by nonlinear and stochastic interactions of many external and internal degrees of freedom. For these systems, classical thermodynamics typically does not apply. For example, the description of weather and ocean patterns, which attempt to include important features such as turbulence, rely on semiphenomenological mesoscopic models, those in agreement with molecular theories but not capable of being rigorously derived from them. Phase transitions in magnetic systems, and many systems similarly modeled, require careful treatment of a continuum of scales near critical points. In general, rather than having a general theory of nonequilibrium nonlinear process, there are several overlapping approaches, typically geared to classes of systems, usually expanding on nonlinear treatments of stochastic systems. Many biological systems give rise to phenomena at overlapping spatial-temporal scales. For example, the coiling of DNA is reasonably approached by blending microscopic molecular-dynamics calculations with mesoscopic diffusion equations to study angular winding. These approaches have been directed to study electroencephalography (EEG), as well as other biological systems. Therefore, it should not be surprising that the complex human brain supports many phenomena arising at different spatial-temporal scales. What is perhaps surprising is that it seems possible to study truly macroscopic neocortical phenomena such as EEG by appealing to a chain of arguments dealing with overlapping microscopic and mesoscopic scales. A series of papers has developed this statistical mechanics of neocortical interactions (SMNI). This approach permits us to find models of EEG whose variables and parameters are reasonably identified with ensembles of synaptic and neuronal interactions. This approach has only recently been made possible by developments in mathematical physics since the late 1970s, in the field of nonlinear nonequilibrium statistical mechanics. The origins of this theory are in quantum and gravitational field theory.
    Keywords : computational neuroscience, statistical models

    Subject : unspecified
    Area : Other
    Language : English
    Year : 1996

    Affiliations Lester Ingber Research
    Volume : 45
    Publisher : Elsevier
    Pages : 79-112
    Url : http://cogprints.org/96/

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    ingber@alumni.caltech.edu's Peer Evaluation activity

    ingber@alumni.caltech.edu has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.