Reading PAGE

Peer Evaluation activity

Trusted by 1
Downloads 421
Views 31
Full text requests 5
Collected by 1
Followed by 3
Following... 3

Total impact ?

    Send a

    Jerome has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 37

     

    This was brought to you by:

    block this user Jerome K Vanclay Trusted member

    Professor

    Southern Cross University
    European Forest Institute Mediterranean Office (EFIMED)

    Development of dynamic cognitive networks as complex systems approximators: validation in financial time series

    Export to Mendeley

    Dynamic cognitive networks (DCNs) define a novel approach to functionalize cognitive mapping and complex systems analysis, which were recently supported by fuzzy cognitive maps (FCMs). The modeling and inference limitations met in FCMs, especially in situations with strong nonlinearity and temporal phenomena, pushed towards DCNs; their theoretical framework is scheduled to confront the preceding weaknesses and offer wider possibilities in causal structures management. Trying to contribute to the enhancement of DCNs, at first, systemic and environmental metaphors are introduced with practical mathematical formalisms and generalized nomenclature. Nonlinear and asymmetric cause - effect relationships, decaying mechanisms, inertial forces, diminishing effects and biases formulate a powerful set of adaptive characteristics that strengthen the operational behavior of DCNs. Second, the strategic reorientation of DCNs is attempted as generalized approximation tools. This new strategic option is verified not only in classical function approximation tests, but also in the challenging area of securities markets. The platform of evaluation of DCNs involves comparisons with a linear multiple regression model, a feed-forward neural network trained with both back-propagation and evolution strategies, a radial basis function network, and an adaptive network-based fuzzy inference system (ANFIS). Through the experiments for short-term stock price predictions, multiple issues are analyzed not only about the role of diverse DCN parameters, but also about the given problem of financial markets modeling and forecasting. Simulations distinguish DCNs as a strong methodology with noticeable adaptability in complicated patterns and broad generalization capabilities while, at the same time, the all-embracing outcomes support previous findings of partially random walk phenomena in short-term stock market forecasting attempts. (C) 2004 Elsevier B.V. All rights reserved.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Development of dynamic cognitive networks as complex systems approximators: validation in financial time series
    Author(s) : D.E. Koulouriotis, I.E. Diakoulakis, D.M. Emiris, C.D. Zopounidis
    Abstract : Dynamic cognitive networks (DCNs) define a novel approach to functionalize cognitive mapping and complex systems analysis, which were recently supported by fuzzy cognitive maps (FCMs). The modeling and inference limitations met in FCMs, especially in situations with strong nonlinearity and temporal phenomena, pushed towards DCNs; their theoretical framework is scheduled to confront the preceding weaknesses and offer wider possibilities in causal structures management. Trying to contribute to the enhancement of DCNs, at first, systemic and environmental metaphors are introduced with practical mathematical formalisms and generalized nomenclature. Nonlinear and asymmetric cause - effect relationships, decaying mechanisms, inertial forces, diminishing effects and biases formulate a powerful set of adaptive characteristics that strengthen the operational behavior of DCNs. Second, the strategic reorientation of DCNs is attempted as generalized approximation tools. This new strategic option is verified not only in classical function approximation tests, but also in the challenging area of securities markets. The platform of evaluation of DCNs involves comparisons with a linear multiple regression model, a feed-forward neural network trained with both back-propagation and evolution strategies, a radial basis function network, and an adaptive network-based fuzzy inference system (ANFIS). Through the experiments for short-term stock price predictions, multiple issues are analyzed not only about the role of diverse DCN parameters, but also about the given problem of financial markets modeling and forecasting. Simulations distinguish DCNs as a strong methodology with noticeable adaptability in complicated patterns and broad generalization capabilities while, at the same time, the all-embracing outcomes support previous findings of partially random walk phenomena in short-term stock market forecasting attempts. (C) 2004 Elsevier B.V. All rights reserved.
    Subject : unspecified
    Area : Other
    Language : English
    Year : 2005

    Affiliations Southern Cross University
    Journal : Applied Soft Computing
    Volume : 5
    Issue : 2
    Pages : 157 - 179
    Url : http://linkinghub.elsevier.com/retrieve/pii/S1568494604000663
    Doi : 10.1016/j.asoc.2004.06.004

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Jerome's Peer Evaluation activity

    Trusted by 1
    Downloads 421
    Views 31
    Full text requests 5
    Collected by 1
    Followed by 3
    • Habiba Hassan Wassef, Senior professional, Independent international expert, United Nations, WHO, National Coordinator for the 7th European Framework Research Programme, National Research Center in Cairo, Egypt.
    • Thuy Nguyen, Student, Ph.D. Level, Silviculture Research Institute, Ha Noi, Vietnam, The University of Melbourne.
    • Guillaume Dupuy d'Angeac, Publisher, Collective Developments, HEC Alumni, Peerevaluation.
    Following... 3

    Jerome has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 37
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.