Reading PAGE

Peer Evaluation activity

Trusted by 1
Downloads 468
Views 31
Full text requests 5
Collected by 1
Followed by 3
Following... 3

Total impact ?

    Send a

    Jerome has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 37

     

    This was brought to you by:

    block this user Jerome K Vanclay Trusted member

    Professor

    Southern Cross University
    European Forest Institute Mediterranean Office (EFIMED)

    Modelling growth, recruitment and mortality to describe and simulate dynamics of subtropical rainforests following different levels of disturbance

    Export to Mendeley

    The capacity of rainforests to recover from logging disturbance is difficult to model due to the compounding interactions between long-term disturbance effects, natural dynamics, site characteristics and tree species regeneration strategies. The aim of this study was to develop a quantitative model using over three decades of data from stands subjected to various levels of disturbance ranging from natural, through increasing intensities of tree removal to intensive logging. Data for trees ¡Ý 10 cm diameter at 1.3 m above the ground (dbh) in subtropical rainforest of north-east New South Wales, Australia were used. Botanical identity of trees at species level, species-specific shade tolerance and size at maturity were used to classify 117 species into five groups. These groups include the emergent and shade tolerant main canopy species, shade tolerant mid canopy species, shade tolerant understorey species, moderate shade tolerant species, and shade intolerant tree species. Multilevel nonlinear regression was used to estimate growth, recruitment and mortality parameters, based on the assumption of variations in tree species performance at both the plot and tree levels. The species group, tree size and competition from larger trees accounted for most variation at the tree level. Significant stand level variables included topography (elevation, slope and aspect), stand basal area, and time since the disturbance. The final model is a classical matrix management-oriented model with an ecological basis and maximum size-dependent parameters of ingrowth and outgrowth. The model provides a tool to simulate stand performance after logging and to assess silvicultural prescriptions before they are applied. Simulations with estimated parameters indicate that moderate harvesting (47% overstorey basal area (BA) removal) in a checkerboard of logged and unlogged patches (group selection) on a 120-year cycle could enable sustainable timber production without compromising the ecological integrity in these rainforests. This is due to reduced logging damage in group selection, which also released retained stems and facilitated recruitment of both shade tolerant and intolerant trees. Single-tree selection (35% BA removal) created small canopy gaps that resulted in low recruitment, a slight increase in the growth of retained stems and recovery time of 150 years. Intensive single-tree selection (50% BA removal) resulted in high logging damage that increased recovery time to 180 years. Intensive logging (65-80% BA removal) decreased the stem density and created larger canopy gaps allowing for high growth rates and recruitment of both shade tolerant and intolerant trees. However, few retained stems and high mortality of recruits, increased the recovery time to 180-220 years. Pre-harvest climber cutting coupled with poisoning of nontimber species followed by logging could allow harvesting on a 300-year cycle. Shorter logging cycles may lead to changes in species composition as well as in the forest structure.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Modelling growth, recruitment and mortality to describe and simulate dynamics of subtropical rainforests following different levels of disturbance
    Author(s) : M. Kariuki, R.M. Kooyman, L. Brooks, R.G.B. Smith, J.K. Vanclay
    Abstract : The capacity of rainforests to recover from logging disturbance is difficult to model due to the compounding interactions between long-term disturbance effects, natural dynamics, site characteristics and tree species regeneration strategies. The aim of this study was to develop a quantitative model using over three decades of data from stands subjected to various levels of disturbance ranging from natural, through increasing intensities of tree removal to intensive logging. Data for trees ¡Ý 10 cm diameter at 1.3 m above the ground (dbh) in subtropical rainforest of north-east New South Wales, Australia were used. Botanical identity of trees at species level, species-specific shade tolerance and size at maturity were used to classify 117 species into five groups. These groups include the emergent and shade tolerant main canopy species, shade tolerant mid canopy species, shade tolerant understorey species, moderate shade tolerant species, and shade intolerant tree species. Multilevel nonlinear regression was used to estimate growth, recruitment and mortality parameters, based on the assumption of variations in tree species performance at both the plot and tree levels. The species group, tree size and competition from larger trees accounted for most variation at the tree level. Significant stand level variables included topography (elevation, slope and aspect), stand basal area, and time since the disturbance. The final model is a classical matrix management-oriented model with an ecological basis and maximum size-dependent parameters of ingrowth and outgrowth. The model provides a tool to simulate stand performance after logging and to assess silvicultural prescriptions before they are applied. Simulations with estimated parameters indicate that moderate harvesting (47% overstorey basal area (BA) removal) in a checkerboard of logged and unlogged patches (group selection) on a 120-year cycle could enable sustainable timber production without compromising the ecological integrity in these rainforests. This is due to reduced logging damage in group selection, which also released retained stems and facilitated recruitment of both shade tolerant and intolerant trees. Single-tree selection (35% BA removal) created small canopy gaps that resulted in low recruitment, a slight increase in the growth of retained stems and recovery time of 150 years. Intensive single-tree selection (50% BA removal) resulted in high logging damage that increased recovery time to 180 years. Intensive logging (65-80% BA removal) decreased the stem density and created larger canopy gaps allowing for high growth rates and recruitment of both shade tolerant and intolerant trees. However, few retained stems and high mortality of recruits, increased the recovery time to 180-220 years. Pre-harvest climber cutting coupled with poisoning of nontimber species followed by logging could allow harvesting on a 300-year cycle. Shorter logging cycles may lead to changes in species composition as well as in the forest structure.
    Keywords : Rainforest, modelling

    Subject : Forestry
    Area : Environmental studies
    Language : English
    Year : 2006

    Affiliations Southern Cross University
    Journal : Forest Biometry, Modelling and Information Sciences
    Volume : 1
    Pages : 22-46
    Url : http://cms1.gre.ac.uk/conferences/iufro/fbmis/A/6_1_KariukiM_1.pdf

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Jerome's Peer Evaluation activity

    Trusted by 1
    Downloads 468
    Views 31
    Full text requests 5
    Collected by 1
    Followed by 3
    • Habiba Hassan Wassef, Senior professional, Independent international expert, United Nations, WHO, National Coordinator for the 7th European Framework Research Programme, National Research Center in Cairo, Egypt.
    • Thuy Nguyen, Student, Ph.D. Level, Silviculture Research Institute, Ha Noi, Vietnam, The University of Melbourne.
    • Guillaume Dupuy d'Angeac, Publisher, Collective Developments, HEC Alumni, Peerevaluation.
    Following... 3

    Jerome has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 37
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.