Reading PAGE

Peer Evaluation activity

Downloads 30725
Views 164
Following... 21

Total impact ?

    Send a

    Mahendra has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Mahendra Kumar Trivedi

    Independent researcher / mahendra@trivedisrl.com

    Las Vegas Naveda
    Trivedi Global Inc.
    Trivedi Science Research Laboratory Pvt. Ltd

    Effect of Biofield Energy Healing Based Herbomineral Formulation on Pro-inflammatory Cytokines Expression in Biofield Treated Mouse Splenocyte Cells: Impact of the Trivedi Effect®

    Export to Mendeley

    A proprietary herbomineral formulation was formulated with four ingredients; a mixture of the minerals (zinc, magnesium, and selenium) and the herbal root extract ashwagandha. The aim of the study was to evaluate the immunomodulatory potential of Biofield Energy Healing (The Trivedi Effect®) on the herbomineral formulation in splenocyte cells, which were isolated from Biofield Treated mice. The test formulation was divided into two parts. One part was denoted as the control without any Biofield Energy Treatment, while the other part was defined as the Biofield Energy Treated sample, which received the Biofield Energy Healing Treatment remotely from seven renowned Biofield Energy Healers. The splenocyte cells were treated with the test formulation at concentrations ranges from 0.00001053 to 10.53 µg/mL and analyzed after 48 hours of treatment by MTT assay. The cell viability data showed safe concentrations up to 1.053 µg/mL with viability ranges from 69.22% to 123.88% in the test formulation groups. The expression of TNF-α was decreased by 4.82% at 1.053 µg/mL in the Biofield Energy Treated test formulation compared with the vehicle control. The level of TNF-α was significantly decreased by 2.02%, 4.92%, and 18.78% at 0.00001053, 0.001053, and 1.053 µg/mL, respectively in the Biofield Energy Treated test formulation group as compared to the untreated test formulation. The expression of IL-1β was significantly reduced by 83.65%, 92.15%, 27.30%, and 41.88% at 0.00001053, 0.0001053, 0.001053, and 1.053 µg/mL, respectively in the Biofield Energy Treated test formulation compared with the vehicle control. The Biofield Treated test formulation showed significant reduction of IL-1β by 17.26%, 92.61% (p≤0.001), 34.62% (p≤0.05), and 16.13% at 0.00001053, 0.0001053, 0.001053, and 1.053 µg/mL, respectively compared with the untreated test formulation. Additionally, the expression of chemokine MIP-1α was significantly reduced by 17.03%, 10.99%, 22.33%, 24.21%, 21.61%, and 30.67% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, and 1.053 µg/mL, respectively in the Biofield Treated test formulation compared with the vehicle control. The MIP-1α expression was significantly reduced by 19.32% and 12.56% at 0.01053 and 0.1053 µg/mL, respectively in the Biofield Treated test formulation compared with the untreated test formulation. The overall results demonstrated that the Biofield Energy Treated test formulation significantly down-regulated the expression of TNF-α, IL-1β, and MIP-1α in the Biofield Treated mice splenocyte cells compared to the untreated test formulation. These data suggest that the Biofield Treated test formulation can be used for autoimmune and inflammatory diseases, stress management and anti-aging by improving overall health.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Effect of Biofield Energy Healing Based Herbomineral Formulation on Pro-inflammatory Cytokines Expression in Biofield Treated Mouse Splenocyte Cells: Impact of the Trivedi Effect®
    Author(s) : Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak, Barry Dean Wellborn, Deborah Lea Smith, Dezi Ann Koster, Elizabeth Patric, Jagdish Singh, Kathleen Starr Vagt, Krista Joanne Callas, Olga Mirgalijeva
    Abstract : A proprietary herbomineral formulation was formulated with four ingredients; a mixture of the minerals (zinc, magnesium, and selenium) and the herbal root extract ashwagandha. The aim of the study was to evaluate the immunomodulatory potential of Biofield Energy Healing (The Trivedi Effect®) on the herbomineral formulation in splenocyte cells, which were isolated from Biofield Treated mice. The test formulation was divided into two parts. One part was denoted as the control without any Biofield Energy Treatment, while the other part was defined as the Biofield Energy Treated sample, which received the Biofield Energy Healing Treatment remotely from seven renowned Biofield Energy Healers. The splenocyte cells were treated with the test formulation at concentrations ranges from 0.00001053 to 10.53 µg/mL and analyzed after 48 hours of treatment by MTT assay. The cell viability data showed safe concentrations up to 1.053 µg/mL with viability ranges from 69.22% to 123.88% in the test formulation groups. The expression of TNF-α was decreased by 4.82% at 1.053 µg/mL in the Biofield Energy Treated test formulation compared with the vehicle control. The level of TNF-α was significantly decreased by 2.02%, 4.92%, and 18.78% at 0.00001053, 0.001053, and 1.053 µg/mL, respectively in the Biofield Energy Treated test formulation group as compared to the untreated test formulation. The expression of IL-1β was significantly reduced by 83.65%, 92.15%, 27.30%, and 41.88% at 0.00001053, 0.0001053, 0.001053, and 1.053 µg/mL, respectively in the Biofield Energy Treated test formulation compared with the vehicle control. The Biofield Treated test formulation showed significant reduction of IL-1β by 17.26%, 92.61% (p≤0.001), 34.62% (p≤0.05), and 16.13% at 0.00001053, 0.0001053, 0.001053, and 1.053 µg/mL, respectively compared with the untreated test formulation. Additionally, the expression of chemokine MIP-1α was significantly reduced by 17.03%, 10.99%, 22.33%, 24.21%, 21.61%, and 30.67% at 0.00001053, 0.0001053, 0.001053, 0.01053, 0.1053, and 1.053 µg/mL, respectively in the Biofield Treated test formulation compared with the vehicle control. The MIP-1α expression was significantly reduced by 19.32% and 12.56% at 0.01053 and 0.1053 µg/mL, respectively in the Biofield Treated test formulation compared with the untreated test formulation. The overall results demonstrated that the Biofield Energy Treated test formulation significantly down-regulated the expression of TNF-α, IL-1β, and MIP-1α in the Biofield Treated mice splenocyte cells compared to the untreated test formulation. These data suggest that the Biofield Treated test formulation can be used for autoimmune and inflammatory diseases, stress management and anti-aging by improving overall health.
    Keywords : Biofield Energy Healing Treatment, Biofield Energy Healers, The Trivedi Effect®, Inflammation, Immunomodulation, Splenocytes, Cytokines, ELISA

    Subject : Cell Biology
    Area : Biology
    Language : English
    Year : 2016

    Affiliations Trivedi Global Inc.
    Trivedi Science Research Laboratory Pvt. Ltd
    Journal : American Journal of BioScience
    Volume : 4
    Issue : 6
    Publisher : Science Publishing Group
    Pages : 74-83
    Doi : 10.11648/j.ajbio.20160406.11
    Attribution Non-Commercial Share Alike

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Mahendra's Peer Evaluation activity

    Downloads 30725
    Views 164
    Following... 21
    • Alejandro Engelmann, Independent researcher, Library, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    • Selma Dorrestein, Student, Master Level, University of Amsterdam.
    • Francisco Herrera, Publisher, UNIVERSITY OF GRANADA.
    • Ralf Steinmetz, Professor, university.
    • Gregory Dudek, Professor, McGill University, School of Computer Science, Montreal, Canada.
    • Umberto Straccia, Senior Research Fellow, ISTI - CNR.
    • Sorin Cotofana, Associate Professor, Deft University of Technology, Faculty of Electrical Engineeting, Mathematics, and Computer Science. Computer Engineering, Delft, The Netherlands.
    • Stefan Trausan-Matu, Professor, Computer Science Department, Politehnica University of Bucharest, Research Institute for Artificial Intelligence.
    • Jean Quisquater, Professor, UCL Crypto Group.
    • Markus Jakobsson, Principal Research Fellow, PayPal, FatSkunk, Indiana University.
    • Michael Elad, Professor, Technion - Israel institute of Technology.
    • Andrew Lumsdaine, Professor, Indiana University.
    • Mikael Nilsson, Student, Ph.D. Level, Royal Institute of Technology, Stockholm, Sweden.
    • Emilie Combet, Lecturer, MVLS, University of Glasgow, Glasgow, Centre for Population and Health Sciences, Life-course Nutrition and Health.
    • Werner Muller, Professor, Faculty of Life Science, University of Manchester, Manchester.
    • Syam Mohan, Senior Research Fellow, Pharmacology, University of Malaya, Malaysia.
    • Ramy K Aziz, Lecturer, Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
    • Paweł K. Jędrzejko, Associate Professor, Department of American and Canadian Studies of the Institute of English Cultures and Literatures, University of Silesia in Katowice, Poland.
    • Nader Ale Ebrahim, Independent researcher, Research Support Unit, Centre of Research Services, Institute of Research Management and Monitoring (IPPP), University of Malaya, Malaysia.
    • Kelli Barr, Student, Ph.D. Level, Department of Philosophy and Religion Studies, University of North Texas, Denton, TX.
    • Pandelis Perakakis, Post Doctorate, Economics department, Universitet Jaume I, Castellon.

    Mahendra has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.