Reading PAGE

Peer Evaluation activity

Downloads 28710
Views 162
Following... 21

Total impact ?

    Send a

    Mahendra has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0

     

    This was brought to you by:

    block this user Mahendra Kumar Trivedi

    Independent researcher / mahendra@trivedisrl.com

    Las Vegas Naveda
    Trivedi Global Inc.
    Trivedi Science Research Laboratory Pvt. Ltd

    Evaluation of the Impact of the Trivedi Effect® -Energy of Consciousness on the Structure and Isotopic Abundance Ratio of Magnesium Gluconate Using LC-MS and NMR Spectroscopy

    Export to Mendeley

    Magnesium gluconate is a classical pharmaceutical/nutraceutical compound used as a magnesium ion source for the prevention and treatment of hypomagnesemia. The present study was aimed to investigate the effect of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio (PM+1/PM and PM+2/PM) using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect® - Biofield Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The LC-MS analysis of both the control and treated samples indicated the presence of mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.52 min and fragmentation pattern of the both sample were almost similar. The relative peak intensities of the fragment ions were significantly changed in the treated sample compared with the control sample. The proton and carbon signals for CH, CH2 and CO groups in the proton and carbon NMR spectra were observed almost similar for the control and the treated samples. The percentage change in the isotopic abundance ratio of PM+1/PM (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) was significantly decreased in the treated sample by 17.51% compared with the control sample. Consequently, the isotopic abundance ratio of PM+2/PM (18O/16O or 26Mg/24Mg) in the treated sample was significantly increased by 79.44% compared to the control sample. Briefly, 13C, 2H, 17O, and 25Mg contributions from (C12H23MgO14)+ to m/z 416; 18O and 26Mg contributions from (C12H23MgO14)+ to m/z 417 in treated sample were significantly altered compared with the control sample. Thus, The Trivedi Effect® Treated magnesium gluconate might be supportive to design the novel potent enzyme inhibitors using its kinetic isotope effects. Consequently, The Trivedi Effect® Treated magnesium gluconate would be valuable for designing better pharmaceutical and/or nutraceutical formulations through its changed physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections.

    Oh la laClose

    Your session has expired but don’t worry, your message
    has been saved.Please log in and we’ll bring you back
    to this page. You’ll just need to click “Send”.

    Your evaluation is of great value to our authors and readers. Many thanks for your time.

    Review Close

    Short review
    Select a comment
    Select a grade
    You and the author
    Anonymity My review is anonymous( Log in  or  Register )
    publish
    Close

    When you're done, click "publish"

    Only blue fields are mandatory.

    Relation to the author*
    Overall Comment*
    Anonymity* My review is anonymous( Log in  or  Register )
     

    Focus & Objectives*

    Have the objectives and the central topic been clearly introduced?

    Novelty & Originality*

    Do you consider this work to be an interesting contribution to knowledge?

    Arrangement, Transition and Logic

    Are the different sections of this work well arranged and distributed?

    Methodology & Results

    Is the author's methodology relevant to both the objectives and the results?

    Data Settings & Figures

    Were tables and figures appropriate and well conceived?

    References and bibliography

    Is this work well documented and has the bibliography been properly established?

    Writing

    Is this work well written, checked and edited?

    Write Your Review (you can paste text as well)
    Please be civil and constructive. Thank you.


    Grade (optional, N/A by default)

    N/A 1 1.5 2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5 8 8.5 9 9.5 10
    Close

    Your mailing list is currently empty.
    It will build up as you send messages
    and links to your peers.

     No one besides you has access to this list.
    Close
    Enter the e-mail addresses of your recipients in the box below.  Note: Peer Evaluation will NOT store these email addresses   log in
    Your recipients

    Your message:

    Your email : Your email address will not be stored or shared with others.

    Your message has been sent.

    Description

    Title : Evaluation of the Impact of the Trivedi Effect® -Energy of Consciousness on the Structure and Isotopic Abundance Ratio of Magnesium Gluconate Using LC-MS and NMR Spectroscopy
    Author(s) : Mahendra Kumar Trivedi, Alice Branton, Dahryn Trivedi, Gopal Nayak
    Abstract : Magnesium gluconate is a classical pharmaceutical/nutraceutical compound used as a magnesium ion source for the prevention and treatment of hypomagnesemia. The present study was aimed to investigate the effect of The Trivedi Effect® - Energy of Consciousness Healing Treatment (Biofield Energy Healing Treatment) on magnesium gluconate for the change in the structural properties and isotopic abundance ratio (PM+1/PM and PM+2/PM) using LC-MS and NMR spectroscopy. Magnesium gluconate was divided into two parts – one part was control, and another part was treated with The Trivedi Effect® - Biofield Energy Healing Treatment remotely by twenty renowned Biofield Energy Healers and defined as The Trivedi Effect® Treated sample. The LC-MS analysis of both the control and treated samples indicated the presence of mass of the protonated magnesium gluconate at m/z 415 at the retention time of 1.52 min and fragmentation pattern of the both sample were almost similar. The relative peak intensities of the fragment ions were significantly changed in the treated sample compared with the control sample. The proton and carbon signals for CH, CH2 and CO groups in the proton and carbon NMR spectra were observed almost similar for the control and the treated samples. The percentage change in the isotopic abundance ratio of PM+1/PM (2H/1H or 13C/12C or 17O/16O or 25Mg/24Mg) was significantly decreased in the treated sample by 17.51% compared with the control sample. Consequently, the isotopic abundance ratio of PM+2/PM (18O/16O or 26Mg/24Mg) in the treated sample was significantly increased by 79.44% compared to the control sample. Briefly, 13C, 2H, 17O, and 25Mg contributions from (C12H23MgO14)+ to m/z 416; 18O and 26Mg contributions from (C12H23MgO14)+ to m/z 417 in treated sample were significantly altered compared with the control sample. Thus, The Trivedi Effect® Treated magnesium gluconate might be supportive to design the novel potent enzyme inhibitors using its kinetic isotope effects. Consequently, The Trivedi Effect® Treated magnesium gluconate would be valuable for designing better pharmaceutical and/or nutraceutical formulations through its changed physicochemical and thermal properties, which might be providing better therapeutic response against various diseases such as diabetes mellitus, allergy, aging, inflammatory diseases, immunological disorders, and other chronic infections.
    Keywords : Magnesium Gluconate using NMR, Relative Peak Intensities of Fragment Ions, Liquid Chromatograms of Magnesium Gluconate Magnesium Gluconate, MgC12H22O14, Magnesium Gluconate Isotopic Abundance Ratio

    Subject : Nutraceuticals
    Area : Health Sciences
    Language : English
    Year : 2017

    Affiliations Trivedi Global Inc.
    Journal : American Journal of Biomedical and Life Sciences
    Volume : 5
    Issue : 1
    Publisher : Science Publishing Group
    Pages : 6-15
    Doi : 10.11648/j.ajbls.20170501.12
    Attribution Non-Commercial Share Alike

    Leave a comment

    This contribution has not been reviewed yet. review?

    You may receive the Trusted member label after :

    • Reviewing 10 uploads, whatever the media type.
    • Being trusted by 10 peers.
    • If you are blocked by 10 peers the "Trust label" will be suspended from your page. We encourage you to contact the administrator to contest the suspension.

    Does this seem fair to you? Please make your suggestions.

    Please select an affiliation to sign your evaluation:

    Cancel Evaluation Save

    Please select an affiliation:

    Cancel   Save

    Mahendra's Peer Evaluation activity

    Downloads 28710
    Views 162
    Following... 21
    • Alejandro Engelmann, Independent researcher, Library, Swedish University of Agricultural Sciences, Uppsala, Sweden.
    • Selma Dorrestein, Student, Master Level, University of Amsterdam.
    • Francisco Herrera, Publisher, UNIVERSITY OF GRANADA.
    • Ralf Steinmetz, Professor, university.
    • Gregory Dudek, Professor, McGill University, School of Computer Science, Montreal, Canada.
    • Umberto Straccia, Senior Research Fellow, ISTI - CNR.
    • Sorin Cotofana, Associate Professor, Deft University of Technology, Faculty of Electrical Engineeting, Mathematics, and Computer Science. Computer Engineering, Delft, The Netherlands.
    • Stefan Trausan-Matu, Professor, Computer Science Department, Politehnica University of Bucharest, Research Institute for Artificial Intelligence.
    • Jean Quisquater, Professor, UCL Crypto Group.
    • Markus Jakobsson, Principal Research Fellow, PayPal, FatSkunk, Indiana University.
    • Michael Elad, Professor, Technion - Israel institute of Technology.
    • Andrew Lumsdaine, Professor, Indiana University.
    • Mikael Nilsson, Student, Ph.D. Level, Royal Institute of Technology, Stockholm, Sweden.
    • Emilie Combet, Lecturer, MVLS, University of Glasgow, Glasgow, Centre for Population and Health Sciences, Life-course Nutrition and Health.
    • Werner Muller, Professor, Faculty of Life Science, University of Manchester, Manchester.
    • Syam Mohan, Senior Research Fellow, Pharmacology, University of Malaya, Malaysia.
    • Ramy K Aziz, Lecturer, Department of Microbiology and Immunology, Faculty of Pharmacy, Cairo University, Cairo, Egypt.
    • Paweł K. Jędrzejko, Associate Professor, Department of American and Canadian Studies of the Institute of English Cultures and Literatures, University of Silesia in Katowice, Poland.
    • Nader Ale Ebrahim, Independent researcher, Research Support Unit, Centre of Research Services, Institute of Research Management and Monitoring (IPPP), University of Malaya, Malaysia.
    • Kelli Barr, Student, Ph.D. Level, Department of Philosophy and Religion Studies, University of North Texas, Denton, TX.
    • Pandelis Perakakis, Post Doctorate, Economics department, Universitet Jaume I, Castellon.

    Mahendra has...

    Trusted 0
    Reviewed 0
    Emailed 0
    Shared/re-used 0
    Discussed 0
    Invited 0
    Collected 0
    Invite this peer to...
    Title
    Start date (dd/mm/aaaa)
    Location
    URL
    Message
    send
    Close

    Full Text request

    Your request will be sent.

    Please enter your email address to be notified
    when this article becomes available

    Your email


     
    Your email address will not be shared or spammed.